Etude du champ (induction) magnétique à 50 Hz induit par la présence de la ligne 400 kV entre Avelin et Gavrelle

Mesures et Simulation

Simulation du champ magnétique induit par la nouvelle ligne

A. Azoulay
Janvier 2014
Induction ou champ magnétique
Plan

1. Introduction
2. Campagnes de mesures autour de la ligne actuelle
3. Simulation de la ligne actuelle et comparaison aux mesures
4. Simulation de la ligne future
5. Conclusion
1. Introduction

Suivi à examen en groupe de travail Santé du 30/10/2013

Objectifs de l’étude

Volet 1 : Mesure des champs magnétiques (CM) au domicile d’un panel de riverains volontaires pendant 24 heures (11 volontaires au total)

Volet 2 : Mesure des champs magnétiques d’un panel de riverains volontaires pour des mesures individuelles pendant 24 heures (pas de volontaire)

Volet 3 : Mesure des champs magnétiques autour la ligne actuelle selon des profils déterminés en différents sites de la ligne (Mesures APAVE)

Volet 4 : Analyse des mesures autour de la ligne actuelle et modélisation; modélisation des champs autour de la future ligne.
2. Campagnes de mesures autour de la ligne actuelle

Volet 1 : Mesure des champs magnétiques au domicile d’un panel de riverains volontaires pendant 24 heures

• Phase 1 : 16 au 19 décembre 2013. 7 riverains volontaires

• Phase 2 : 14 au 15 janvier 2014. 4 riverains volontaires

 • Mesures toutes les 10 secondes pendant 24 heures

 • 9 volontaires proches de la ligne 400 kV Avelin – Gavrelle

 • 2 volontaires proches de lignes différentes
Comparaison Intensité de transit (A) au Champ magnétique (µT) chez un riverain (à 130 m)
<table>
<thead>
<tr>
<th>Volontaire</th>
<th>Lieu</th>
<th>Dates début</th>
<th>Imoyen (A)</th>
<th>CM Moyen (µT)</th>
<th>CM max (µT)</th>
<th>CM minimum (µT)</th>
<th>Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Moncheaux</td>
<td>16/12/2013</td>
<td>1165</td>
<td>0,19</td>
<td>0,30</td>
<td>0,08</td>
<td>175</td>
</tr>
<tr>
<td>B</td>
<td>Izel les Equerchin</td>
<td>16/12/2013</td>
<td>1159</td>
<td>0,72</td>
<td>1,10</td>
<td>0,32</td>
<td>65</td>
</tr>
<tr>
<td>C</td>
<td>Henin Beaumont</td>
<td>17/12/2013</td>
<td>989</td>
<td>0,14</td>
<td>0,23</td>
<td>0,04</td>
<td>165</td>
</tr>
<tr>
<td>D</td>
<td>Izel les Equerchin</td>
<td>17/12/2013</td>
<td>986</td>
<td>1,86</td>
<td>3,29</td>
<td>0,20</td>
<td>40</td>
</tr>
<tr>
<td>E</td>
<td>Moncheaux</td>
<td>18/12/2013</td>
<td>898</td>
<td>0,42</td>
<td>0,75</td>
<td>0,01</td>
<td>90</td>
</tr>
<tr>
<td>F</td>
<td>Auby</td>
<td>16/12/2013</td>
<td>1163</td>
<td>0,02</td>
<td>0,03</td>
<td>0,01</td>
<td>690</td>
</tr>
<tr>
<td>G</td>
<td>Evin-Malmaison</td>
<td>14/01/2014</td>
<td>413</td>
<td>0,14</td>
<td>0,37</td>
<td>0,01</td>
<td>130</td>
</tr>
<tr>
<td>H</td>
<td>Leforest</td>
<td>14/01/2014</td>
<td>410</td>
<td>0,46</td>
<td>1,27</td>
<td>0,00</td>
<td>55</td>
</tr>
<tr>
<td>I</td>
<td>Leforest</td>
<td>14/01/2014</td>
<td>406</td>
<td>0,13</td>
<td>0,35</td>
<td>0,00</td>
<td>130</td>
</tr>
<tr>
<td>J</td>
<td>Le Croquet</td>
<td>14/01/2014</td>
<td>pas d'info</td>
<td>0,37</td>
<td>0,59</td>
<td>0,07</td>
<td>proche de ligne différente</td>
</tr>
<tr>
<td>K</td>
<td>Gavrelle 220kV</td>
<td>17/12/2013</td>
<td>167</td>
<td>1,15</td>
<td>2,57</td>
<td>0,10</td>
<td>sous ligne 225kV</td>
</tr>
</tbody>
</table>
Volet 2 : Mesure des champs magnétiques d’un panel de riverains volontaires pour des mesures individuelles pendant 24 heures (pas de volontaire) - Annulé

Volet 3 : Mesure des champs magnétiques autour la ligne actuelle selon des profils déterminés en différents sites de la ligne (Mesures APAVE)

Voir Présentation Résultats APAVE
3. Simulation de la ligne actuelle et comparaison aux mesures

Profil type à partir du point le plus bas de la ligne

Simulation ligne actuelle pour une intensité de 1000 A
Mesures aux domiciles ramenées à l moyen = 1000 A comparées à la simulation du profil à partir du point le plus bas de la ligne.

Comparaison de la simulation aux mesures APAVE à Tourmignies
Comparaison Simulation aux Mesures Apave (avec correction des variations d’intensité sur la ligne)

MONS EN PEVELE LE HEM (13 janvier entre 14h01 et 14h40)
Influence de la forme de la portée (logiciel EFC 400)

Près des pylônes, le CM est plus faible qu’au milieu de portée, à la même distance de l’axe de la ligne
4. Simulation du CM de la ligne future

Pylône double faisceau, contrairement aux pylônes actuels
Profil théorique maximum du Champ magnétique en fonction de la distance, pour un courant moyen total de 2000 A (1000 A / faisceau) ** Bmax = 11.7 µT ** Date 21-Jan-2014 15:17:59
Simulations ligne actuelle et ligne future

- Ligne actuelle 1x1000 A
- Ligne future 2x500 A
- Ligne future 2x1000 A

Distance à l'axe à partir du milieu de la portée (m)

Induction/Champ magnétique (µT)
5. Conclusion

• Etude très intéressante tant au plan des mesures que des calculs et de la simulation.

• Les niveaux de CM sont loin d’être élevés, quelques soient les mesures, on n’a jamais dépassé 8 µT, même sous les lignes actuelles.

• On a trouvé une excellente corrélation entre intensité de transit et induction/champ magnétique et une très bonne reproductibilité des mesures.

• Les nouveaux pylônes devraient produire moins de CM que les pylônes actuels pour les mêmes intensités de transit.

• A proximité des pylônes, le CM est plus faible qu’en milieu de portée, toutes choses égales par ailleurs. (distance à la ligne et intensité identique).

• Un grand merci à tous les participants volontaires de cette étude, et à leur accueil toujours cordial et amical.
Merci de votre attention
